213 research outputs found

    Design, analysis and evaluation of sigma-delta based beamformers for medical ultrasound imaging applications

    Get PDF
    The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort

    A GUI driven Σ-Δ modulator design, evaluation and measurement tool with a view to practical implementation

    Get PDF
    A user-friendly design tool created in the MATLAB/Simulink environment to speed up the design, analysis, evaluation and measurement of single-loop and multistage sigma-delta (Sigma-Delta) modulators at the system level is presented in this paper. The tool covers a variety of Simulink-based design topologies of low-pass, band-pass and high-pass Sigma-Delta modulators

    Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche

    Get PDF
    In plants mechanical signals pattern morphogenesis through the polar transport of the hormone auxin and through regulation of interphase microtubule (MT) orientation. To date, the mechanisms by which such signals induce changes in cell polarity remain unknown. Through a combination of time-lapse imaging, and chemical and mechanical perturbations, we show that mechanical stimulation of the SAM causes transient changes in cytoplasmic calcium ion concentration (Ca^(2+)) and that transient Ca^(2+) response is required for downstream changes in PIN-FORMED 1 (PIN1) polarity. We also find that dynamic changes in Ca^(2+) occur during development of the SAM and this Ca^(2+) response is required for changes in PIN1 polarity, though not sufficient. In contrast, we find that Ca^(2+) is not necessary for the response of MTs to mechanical perturbations revealing that Ca^(2+) specifically acts downstream of mechanics to regulate PIN1 polarity response

    A silent gigantic solitary fibrous tumor of the pleura: case report

    Get PDF
    Solitary fibrous tumor of the pleura is a rare mesenchymal tumor, representing less than 5% of all neoplasms associated with the pleura. A 57-year-old man had general malaise without chest symptoms for 1 month. A chest roentgenogram and computed tomography showed a giant mass in the left thorax. Although the tumor compressed the descending aorta and other mediastinal structures strongly, thereby shifting them to the right side, the patient had no symptoms except malaise. The tumor was successfully resected via two separate thoracotomies. The tumor was measured (20 cm × 19 cm × 15 cm) and weighed (2150 g). The tumor was histologically and immunohistochemically diagnosed as benign. Although SFT is benign, a long follow-up period is essential as even patients with complete resection are at risk of recurrence many years after surgery

    First evidence of coherent K+K^{+} meson production in neutrino-nucleus scattering

    Get PDF
    Neutrino-induced charged-current coherent kaon production, νμA→μ−K+A\nu_{\mu}A\rightarrow\mu^{-}K^{+}A, is a rare, inelastic electroweak process that brings a K+K^+ on shell and leaves the target nucleus intact in its ground state. This process is significantly lower in rate than neutrino-induced charged-current coherent pion production, because of Cabibbo suppression and a kinematic suppression due to the larger kaon mass. We search for such events in the scintillator tracker of MINERvA by observing the final state K+K^+, μ−\mu^- and no other detector activity, and by using the kinematics of the final state particles to reconstruct the small momentum transfer to the nucleus, which is a model-independent characteristic of coherent scattering. We find the first experimental evidence for the process at 3σ3\sigma significance.Comment: added ancillary file with information about the six kaon candidate

    Single neutral pion production by charged-current νˉμ\bar{\nu}_\mu interactions on hydrocarbon at ⟨Eν⟩=\langle E_\nu \rangle = 3.6 GeV

    Get PDF
    Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for νˉe\bar{\nu}_e appearance oscillation experiments. The differential cross sections for π0\pi^0 momentum and production angle, for events with a single observed π0\pi^0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π0\pi^0 kinematics for this process.Comment: 6 pages, 5 figures, submitted to Physics Letters
    • …
    corecore